

Evaluation of six molecular assays for the detection of Aigai virus

Anna Papa¹, Styliani Pappa¹

AFFILIATION

1 Aristotle University of Thessaloniki, Thessaloniki, Greece

CORRESPONDENCE TO

Anna Papa. Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece. E-mail: annap@auth.gr ORCID ID: https://orcid.org/0000-0002-6643-3322

Popul. Med. 2023;5(October):26

KEYWORDS Aigai virus, orthonairovirus, molecular assays

Received: 12 September 2023, Accepted: 18 September 2023

https://doi.org/10.18332/popmed/172259

ABSTRACT

INTRODUCTION Aigai virus (AIGV) is the prototype strain of the novel Orthonairovirus parahaemorrhagiae species (*Nairoviridae* family), which contains the strains of the previous CCHFV genogroup VI (or Greece/Europe-2 or AP-92-like). The reclassification was done due to the genetic distance of AIGV from all genotypes of CCHFV. The aim of the present study was to evaluate the performance of six molecular assays to detect AIGV.

METHODS Undiluted and serial dilutions (1:10 to 1:10000) of culture supernatant of AIGV strain Pentalofos were used for the comparative study. The strain was isolated from *Rhipicephalus bursa* ticks removed in 2015 from a goat in Pentalofos village, Greece. Following RNA extraction, six different molecular assays were applied: two nested RT-PCRs, one RT-PCR, and three real-Time RT-PCRs (one commercial).

RESULTS All assays detected AIGV up to the 1:1000 dilution, while even higher sensitivity (detection of the 1:10000 dilution) was seen in the nested PCRs designed/modified based on the AP92 sequence, and in two of the real-time RT-PCRs. Lowest Ct values were taken using the commercial assay.

CONCLUSIONS All assays performed well for the detection of AIGV, suggesting that the risk for underdiagnosis of AIGV infections is low using these assays. However, mismatches in the primers/probes affected the sensitivity of the assays. Genetic surveillance is needed to monitor the mutations in the virus which might affect the efficacy of the diagnostic tools, while a sensitive real time RT-PCR capable to differentiate AIGV and CCHFV will be extremely helpful to estimate the exact burden of AIGV infections.

INTRODUCTION

Aigai virus (AIGV) is the prototype strain of the recently established Orthonairovirus parahaemorrhagiae species which contains the previously Crimean-Congo hemorrhagic fever virus (CCHFV) strains of genogroup VI (or Greece/ Europe-2 or AP-92-like); the name was given after the place of discovery of the original AP-92 strain¹. The reclassification was done by the International Committee on Taxonomy of Viruses (ICTV) based on the sufficient genetic distance of genogroup VI from genotypes I–V/VII^{2,3}.

AIGV has been detected in several tick species, mainly in *Rhipicephalus bursa* ticks, collected in several regions of the Balkans and Turkey⁴⁻⁸. However, only few human cases have been associated with the virus^{9,10}. The rarity of AIGV human infections could be due to low pathogenicity of the virus or to low sensitivity of the diagnostic methods related to primer mismatches. Gruber et al.¹¹ reported that due to the high genetic variability of CCHFV strains in different geographical regions, the diagnostic potential of the molecular tests may be decreased, and they suggested the application of combined protocols. The problem is higher as AIGV presents the highest genetic diversity from all CCHFV genogroups. Currently there is no commercial molecular assay for the specific detection of AIGV, and the diagnosis is based on assays designed for CCHFV. Therefore, the aim of the present study was to evaluate the performance of six molecular assays for detection of AIGV.

METHODS

The culture supernatant of AIGV strain Pentalofos was used for the comparative study. The strain was isolated from a pool of two adult *R. bursa* ticks collected in 2015 from a goat in Pentalofos village, Greece⁴. Viral RNA was extracted using the QiaAmp Viral RNA mini kit (Qiagen, Hilden, Germany)

Table 1. Results of the six molecular protocols applied in this study

Table 2. Alignment of forward primer, reverse primer, and probe sequences of the 6 diagnostic assays to fourAIGV strains and to the prototype CCHFV strain IbAr10200

Strain	Nested RT-PCR ¹²				
	1st round		2nd round		
	Primer F2	Primer R3	Primer F3	Primer R2	Primer R2 (this study)
	TGGACACCTTCACAAACTC	GACAAATTCCCTGCACCA	GAATGTGCATGGGTTAGCTC	GACATCACAATTTCACCAGG	TCATGTCTGACAGCAT
NC_005302, IbAr10200		C	GCA	A	
DQ211638, AP92		TGC	GCC	-GCAGCTT	
MG516211, Pentalofos		TGC	GT	-GCAGCT	
MN811033, CAP14	C	TCA	GC	-GCAGCT	
MK299344, MT		TGCT	GT	-GCAGCC	
	*****	** ** ** ** *****	** ** ** *****	* ** ** ** ** ** **	****

Strain	Nested RT-PCR ⁹			
	1st round		2nd round	
	Primer Gre-F1	Primer Gre-R1	Primer Gre-F2	Primer Gre-R2
	AATGTGCCGAACTTGGACAG	TGCGACAAGTGCAATCCCG	ATCAGATGGCCAGTGCAACC	ACTCCCTGCACCACTCAATG
NC_005302, IbAr10200	-GTCT	АТТ	ТС	GТ-СА
DQ211638, AP92				
MG516211, Pentalofos	AA	А	A	
MN811033, CAP14	A	А	-CA	AT
MK299344, MT	AA	А	-САТ	T
	* *** ** ** *****	*** ******* *****	** *********	**** ** ***** ** *

Continued

Popul. Med. 2023;5(October):26 https://doi.org/10.18332/popmed/172259

Table 2. Continued

Strain	RT-PCR ¹³			
	Primer 6942 +	Primer 7385 -		
	ATGATTGCIAAYAGIAAYTTYAA	ACAGCARTGIATIGGICCCCAYTT		
NC_005301, IbAr10200	A			
DQ211612, AP92				
MG516213, Pentalofos				
MN811030, CAP14				
MK299346, MT				
	***** **********	*****		

Strain	Real Time RT-PCR ¹⁴			
	Primer CCForSEO1	Primer CCRevSE02		
	CAAGGGGTACCAAGAAAATGAAGAAGGC	GCCACAGGGATTGTTCCAAAGCAGAC		
NC_005302, IbAr10200	A	CC		
DQ211638, AP92	A	TAC		
MG516211, Pentalofos	A	TA		
MN811033, CAP14		AA		
MK299344, MT	AA	TA		
	**** ** *************	** ***** ***** *****		

Strain	Real Time RT-PCR ¹⁴			
	Probe SEO1	Probe SEO3	Probe SEOA	
	ATCTACATGCACCCTGCTGTGTTGACA	ATTTACATGCACCCTGCCGTGCTTACA	AGCTTCTTCCCCCACTTCATTGGAGT	
NC_005302, IbAr10200	TTCC-T	TT	G	
DQ211638, AP92	C	CG	GG	
MG516211, Pentalofos	CCC	CCT-G	TG	
MN811033, CAP14	C	CT-G	TG	
MK299344, MT		CTT-G	GG	
	** ******* ** ** ** ***	** ******* ** ** ** ***	** ***** ***** ***** **	

Continued

Table 2. Continued

Strain	Real Time RT-PCR ¹⁵			
	Primer CCHF S1	Primer CCHF S122	Probe CCHF-probe	
	TCTCAAAGAAACACGTGCC	CCTTTTTGAACTCTTCAAACC	ACTCAAGGKAACACTGTGGGCGTAAG	
NC_005302, IbAr10200		-T	AG	
DQ211638, AP92		-TCC	GG	
MG516211, Pentalofos		-TCC	GG	
MN811033, CAP14	???????????????????????????????????????	-TC	AT??????	
MK299344, MT	?	-TC	GG	
		* ** ******* ******	*****	

?: not available sequence for this site of the genome.

and eluted in 50 µL elution buffer. cDNA was synthesized with SuperScript III Reverse Transcriptase (Invitrogen, Thermo Fisher Scientific) in accordance with the instructions of the manufacturer. Virus dilutions of 1:10, 1:100, 1:1000 and 1:10000 in nuclease-free water were prepared and six different molecular assays were used to evaluate the detection of AIGV: 1) one of the first described and often used nested RT-PCR, which amplifies a fragment of the S RNA segment of CCHFV12; a modified version was also applied by replacing the reverse primer of the second round PCR with a newly designed primer (TCATGTCTGACAGCAT) to decrease the number of mismatches; 2) an RT-PCR targeting a 443bp region of the highly conserved polymerase domains within the L-polymerase encoding region¹³; 3) a real-time RT-PCR assay which amplifies a 181bp region near the 5'-end of the S segment¹⁴; 4) a real-time RT-PCR assay which amplifies a 122bp region of the 5' untranslated region of the S segment¹⁵; 5) a commercial Real Time RT-PCR assay (RealStar, CCHFV RT-PCR kit altona, Hamburg, Germany); and 6) a nested RT-PCR which was specifically designed to amplify a fragment of the S segment of AP92 strain (U04958)9.

The primer (forward and reverse) and the probe sequences of all assays were aligned to the respective sequences of four representative AIGV strains and the prototype CCHFV strain IbAr10200. The AIGV strains were AP92 (isolated from *R. bursa* ticks collected in 1975 from a goat in Vergina village in Greece) and Pentalofos from Greece^{4,16}, strain MT-1362 (detected in 2012 in a *R. bursa* tick collected from a cow in Malko Tarnovo in Bulgaria)⁸, and strain CAP14 (detected in 2017 in a female *Rhipicephalus sanguineus* s.l. tick collected from a dog in Mersin in Turkey)⁷.

RESULTS

The diagnostic performances of the six applied assays are

shown in Table 1, while the sequence differences between the primers/probes of each molecular assay in various strains of AIGV and the prototype strain of CCHFV IbAr10200 are seen in Table 2. The nested RT-PCR of Schwarz et al.¹² worked well up to the dilution of 1:1000, while by replacing the reverse primer of the second round PCR (which presented many mismatches) by the newly designed primer, a positive result was taken also at the dilution of 1:10000. As expected, the highest sensitivity (positive result up to the 1:10000 dilution) was seen in the protocol of Midilli et al.⁹, since the primers had been designed based specifically on the sequence of the AP92 strain and although some mismatches were present, they were less than 2. The application of the RT-PCR protocol with the degenerate primers described by Honig et al.¹³ gave a positive result up to the dilution of 1:1000. Similarly, the real-time RT-PCR described by Wolfel et al.¹⁴ gave a positive result up to the dilution of 1:1000; there were 0-3 mismatches in the primers and 0-4 mismatches in the probes. The protocol of Atkinson et al.¹⁵ performed better, as a positive result was taken also at the dilution of 1:10000 (Ct value 35.48). For this assay, it was not feasible to perform a robust variant analysis because its target region includes the CCHFV 5' end of the S segment that is rarely sequenced and reported. The commercial RT-PCR successfully detected the 1:10000 dilution (Ct value 31.27); in general, all Ct values were lower than the in-house real time RT-PCRs.

DISCUSSION

A wide range of molecular methods for CCHFV diagnostics have been reported. An *in silico* study analyzed 22 molecular assays and detected up to 28 mismatches between primers/probes and CCHFV sequences (that time AIGV was considered as genogroup Europe 2) and suggested that combination of assays have to be applied depending

Popul. Med. 2023;5(October):26 https://doi.org/10.18332/popmed/172259 on the geographical region¹¹. In this study, we compared the performance of six different molecular assays for the detection of AIGV. The results of the study showed that mismatches in the primers and probes were seen in all six assays. Despite the high number of mismatches in some assays, all performed well and detected the virus at least up to the 1:1000 dilution. The highest sensitivity was seen in the protocol of Midilli et al.⁹, as the primers were specifically designed on the basis of AP92 sequence, but also in two real time RT-PCRs with lowest Ct values taken using the commercial assay, which is one of the most commonly used in the European laboratories for CCHFV diagnostics.

The pathogenicity of AIGV is currently unknown. The number of human cases associated with AIGV is extremely low and there is no information about the viral load. However, it seems that if the viral load is moderate or high, the virus can be easily detected at least with the assays included in the present study. A well-designed study is needed to test febrile cases, especially in patients who report a tick bite, to estimate the real burden of AIGV. A real time RT-PCR able to differentiate CCHFV and AIGV will be extremely helpful both for human diagnostics and for screening ticks. Similarly, identification of epitopes that could be used for serological assays able to differentiate IgG antibodies against CCHFV and AIGV will provide useful information, since neutralization assays for CCHFV are difficult and there is a need for BSL-4 facilities.

CONCLUSIONS

All assays of the study performed well for the detection of AIGV. However, mismatches in the primers/probes affected the sensitivity level of the assays. Genetic surveillance is needed to monitor the mutations in the virus, which might affect the efficacy of the diagnostic tools, while a sensitive real time RT-PCR able to differentiate AIGV and CCHFV will be extremely helpful to estimate the exact burden of AIGV infections.

REFERENCES

- Papa A, Marklewitz M, Paraskevopoulou S, et al. History and classification of Aigai virus (formerly Crimean-Congo haemorrhagic fever virus genotype VI). J Gen Virol. 2022;103(4):001734. doi:10.1099/jgv.0.001734
- Walker PJ, Siddell SG, Lefkowitz EJ, et al. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch Virol. 2021;166(9):2633-2648. doi:10.1007/s00705-021-05156-1
- Kuhn JH, Adkins S, Alkhovsky SV, et al. 2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol. 2022;167(12):2857-2906. doi:10.1007/s00705-022-05546-z
- 4. Papa A, Papadopoulou E, Tsioka K, et al. Isolation and wholegenome sequencing of a Crimean-Congo hemorrhagic fever

virus strain, Greece. Ticks Tick Borne Dis. 2018;9(4):788-791. doi:10.1016/j.ttbdis.2018.02.024

- Panayotova E, Papa A, Trifonova I, Christova I. Crimean-Congo hemorrhagic fever virus lineages Europe 1 and Europe 2 in Bulgarian ticks. Ticks Tick Borne Dis. 2016;7(5):1024-1028. doi:10.1016/j.ttbdis.2016.05.010
- Sherifi K, Cadar D, Muji S, et al. Crimean-Congo hemorrhagic fever virus clades V and VI (Europe 1 and 2) in ticks in Kosovo, 2012. PLoS Negl Trop Dis. 2014;8(9):e3168. doi:10.1371/journal.pntd.0003168
- Ergünay K, Dinçer E, Kar S, et al. Multiple orthonairoviruses including Crimean-Congo hemorrhagic fever virus, Tamdy virus and the novel Meram virus in Anatolia. Ticks Tick Borne Dis. 2020;11(5):101448. doi:<u>10.1016/j. ttbdis.2020.101448</u>
- 8. Hua BL, Scholte FE, Ohlendorf V, et al. A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells. Elife. 2020;9:e50999. doi:10.7554/eLife.50999
- Midilli K, Gargili A, Ergonul O, et al. The first clinical case due to AP92 like strain of Crimean-Congo Hemorrhagic Fever virus and a field survey. BMC Infect Dis. 2009;9:90. doi:10.1186/1471-2334-9-90
- Salehi-Vaziri M, Baniasadi V, Jalali T, et al. The First fatal case of Crimean-Congo Hemorrhagic Fever caused by the AP92-Like strain of the Crimean-Congo Hemorrhagic Fever Virus. Jpn J Infect Dis. 2016;69(4):344-346. doi:<u>10.7883/yoken.</u> JJID.2015.533
- 11. Gruber CEM, Bartolini B, Castilletti C, et al. Geographical variability affects CCHFV detection by RT-PCR: a tool for In-Silico evaluation of Molecular assays. Viruses. 2019;11(10):953. doi:10.3390/v11100953
- 12. Schwarz TF, Nsanze H, Longson M, et al. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean-Congo hemorrhagic fever virus in the United Arab Emirates. Am J Trop Med Hyg. 1996;55(2):190-196. doi:10.4269/ajtmh.1996.55.190
- 13. Honig JE, Osborne JC, Nichol ST. Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology. 2004;321(1):29-35. doi:<u>10.1016/j.</u> <u>virol.2003.09.042</u>
- Wölfel R, Paweska JT, Petersen N, et al. Virus detection and monitoring of viral load in Crimean-Congo hemorrhagic fever virus patients. Emerg Infect Dis. 2007;13(7):1097-1100. doi:10.3201/eid1307.070068
- Atkinson B, Chamberlain J, Logue CH, et al. Development of a real-time RT-PCR assay for the detection of Crimean-Congo hemorrhagic fever virus. Vector Borne Zoonotic Dis. 2012;12(9):786-793. doi:10.1089/vbz.2011.0770
- 16. Papadopoulos O, Koptopoulos G. Crimean-Congo hemorrhagic fever (CCHF) in Greece: isolation of the virus from Rhipicephalus bursa ticks and a preliminary serological survey. In: Vesenjak-Hirjan J, Porterfield JS, editors. Zentralblatt für Bakteriologie. Supplementum 9. Stuttgart, Germany: Gustav Fisher Verlag; 1980. p. 189–193.

CONFLICTS OF INTEREST

The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none was reported.

FUNDING

This work was supported by the Joint Action 848096 / SHARP JA which has received funding from the European Union's Health Programme (2014–2020).

ETHICAL APPROVAL AND INFORMED CONSENT

Ethical approval and informed consent were not required for this study.

DATA AVAILABILITY

The data supporting this research are available from the authors on reasonable request

AUTHORS' CONTRIBUTIONS

SP: laboratory experiments and writing of the manuscript. AP: conceptualization, design of the work, interpretation of data, and writing the final version of the manuscript.

PROVENANCE AND PEER REVIEW

Not commissioned; internally peer reviewed.

Popul. Med. 2023;5(October):26 https://doi.org/10.18332/popmed/172259